File System Design
for Distributed Persistent Memory

Youyou Lu
Tsinghua University

luyouyou@tsinghua.edu.cn
http://storage.cs.tsinghua.edu.cn/~lu

Latency and Throughput Demands

’ Alibaba. com”®

1.48 billion 0.256 miillion
txs/day ixc/second

/ 14.8 25.65

10.51Z2

12. 275

2016 2017 2016 2017

9.56 fhillion
tickets/day

PayPal

11. 6 million
payments/day

In-Memory Storage and Computing

* Data-driven Information Technology

* Computing-Intensive Computing =2 Data-Intensive Computing
* HPC, Big Data, Al

* Low-latency data storage and processing

oar

In-memory Databases In-Memory Data Analytics Al System

NVMM & RDMA

* NVMM (3D XPoint, etc)

* Data persistency
* Byte-addressable

* Low latency

* RDMA
* Remote direct access
* Bypass remotekernel
e Low latency and high throughput

Client Server

Registered Memory Registered Memory

Outline

*Octopus: a RDMA-enabled Distributed Persistent
Memory File System

* Motivation
* Octopus Design
 Evaluation
e Conclusion

eScalable and Reliable RDMA

Modular-Designed Distributed File System

g\ Latency (1KB write+sync)
e DiskGluster Overall 18 ms

* Disk for data storage Hoo [T T
{

* Gigk for communication

Network I
Software
 MemGluster ovea I T S
* Memory for data storage
Y ; MEM |
e RDMA for communication
RDMA |

o o o o e e o e e e e EEe EEe e e e e S S EEe EEe B S e e e e ?———/

Modular-Designed Distributed File System

g\ Bandwidth (1MB write)
* DiskGluster

* Disk for data storage HDD

* Gigk for communication
Network
Software [N 1117 S o4 %

e MemGluster

* Memory for data storage MEM
* RDMA for communication row

Software . 323 MB/s6.9%

RDMA-enabled Distributed File System

* Cannot simply replace the network/storage module @
* More than fast hardware....

* New features of NVM
* Byte-addressability
* Data persistency

* RDMA verbs
* Write, Read, Atomics (memory semantics)
* Send, Recv (channel semantics)
* Write-with-imm

RDMA-enabled Distributed File System

Opportunity Approaches
Byte-addressability of NVM } G e P g e e
New data flow strategies

—

CPU is the new bottleneck

Efficient RPC design
Concurrent control

9

—

RDMA Atomics

—

* We choose to redesign the DFS!

Outline

*Octopus: a RDMA-enabled Distributed Persistent
Memory File System
* Motivation
* Octopus Design
* High-Throughput Data I/O
e Low Latency Metadata Access
e Evaluation
* Conclusion

*Scalable and Reliable RDMA

10

Octopus Architecture

create(“/home/cym”)

Client1

Read(“/home/lyy”)

Client2

t Self-ldentified RPC
T RDMA-based Data IO

— e o e e e S S S S S S M Ew B Ey,

Shared Persistent Memory Pool '

performs remote direct data access just
like an Octopus uses its eight legs

a2

Nz N3

1. Shared Persistent Memory Pool

* Existing DFSs
* Redundant data copy GlusterFsS

Client Server

User Space Buffer User Space Buffer
Page
Cache
TS ST

12

1. Shared Persistent Memory Pool

* Existing DFSs
* Redundant data copy GlusterFS + DAX

Client Server

User Space Buffer User Space Buffer

Cache
13

1. Shared Persistent Memory Pool

* Octopus with SPMP
o * Introduces the shared persistent memory
* Existing DFSs pool
* Redundant data copy * Global view of data layout
Client Server

User Space Buffer User Space Buffer
4
IS Image

mbuf

Pool

2. Client-Active Data I/0

C:C NIC CPU MEM time

- — P '

* Server-Active B — | !

* Server threads process the ‘ i | !

data |/O . i

* Works well for slow Ethernet ‘ L L !

* CPUs can easily become the : !
bottleneck with fast hardware BB Lookup file data =B Send data

: : o) |

* Client-Active o _.T !

 Let clients read/write data : A !

directly from/to the SPMP _ I YR !

:

|

\ A / o . 15
@B Lookup file data @8 Send address

3. Self-Identified Metadata RPC

* Message-based RPC

e easy toimplement, lower throughput HCA
* DaRPC, FaSST

* Memory-based RPC

e CPU cores scan the message buffer
* FaRM

e Using rdma_write_with_imm?

HCA

Message Pool

* Scan by polling
* Imm data for self-identification

ID

Message Pool

16

4. Collect-Dispatch Distributed Transaction

* mkdir, mknod operations need distributed transactions

 ToiteBiBisdaickingasdotiomit
» Dogalibogedgoggiigremote in-place update
* Distriphdsel tock dieation

. . B : L Local | .
Begin > e
Coordinator | U Unlock Mk

ICe Local
ocl Lock |

Collect

Participant Begin wait

1 * RPC 2 2 R®Ihe-sided

17

Evaluation Setup

e Fvaluation Platform

Cluster CPU Memory ConnectX-3 FDR Number
A E5-2680 * 2 384 GB Yes *5
B E5-2620 16 GB Yes * 7

 Connected with Mellanox SX1012 switch

e Evaluated Distributed File Systems
* memGluster, runs on memory, with RDMA connection
* NVFS[osu], Crail[iBm], optimized to run on RDMA
* memHDEFS, Alluxio, for big data comparison

Overall Efficiency

Latency Breakdown Bandwidth Utilization

100% 7000
05 6000
5000

90% 4000
85% 3000
2000

80% 1000
75% 0

getattr readdir Write Read
msoftware Emem & network msoftware Emem & network

 Software latency is reduced to 6 us (85% of the total latency)

* Achieves read/write bandwidth that approaches the raw
storage and network bandwidth

19

Metadata Operation Performance

MKNOD GETATTR RMNOD

6.E+05 8.E+06
3.E+05
6.E+04 8.E+05
6.E+03 8.E+04 3.E+04
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
lusterfs nvfs lusterfs nvfs glusterfs nvfs
s amis ol L dmes

—*—crail-poll —*—crail-poll

e Octopus provides metadata IOPS in the order of 10°~10°

* Octopus can scales linearly

20

Read/Write Performance

WRITE
5629 MB/s

6.E+03 6.E+03

READ
6088 MB/s

glusterfs

6.E+02 nvfs 6.E+02

crail-np

crail-poll

6.E+01 6.E+01

—-dmfs

6.E+00
1K 4K 16K 64K 256K 1MB 1K 4K

6.E+00
16K 64K 256K 1MB

e Octopus can easily reach the maximum bandwidth of
hardware with a single client

* Octopus can achieve the same bandwidth as Crail even add
an extra data copy [nhot shown] 2

Big Data Evaluation

TestDFSIO (MB/s) Normalized Execution Time
3000 1.05
1
2500 0.95
2000 0.9
0.85
1500 0.8
1000 0.75
0.7
" -Il - 055 I -
0 I - I 0.6 I I
write read Teragen Wordcount
EmemHDFS ®Alluxio =NVFS = Crail =Octopus EmemHDFS ®Alluxio =NVFS = Crail mOctopus

e Octopus can also provide better performance for
big data applicationsthan existing file systems.

22

Conclusion

* Octopus provides high efficiency by redesigning the software

* Octopus’s internal mechanisms
* Simplifies data management layer by reducing data copies
* Rebalances network and server loads with Client-Active 1/0
* Redesigns the metadata RPC and distributed transaction with
RDMA primitives

* Evaluations show that Octopus significantly outperforms
existing file systems

Outline

*Octopus: a RDMA-enabled Distributed Persistent
Memory File System

e Background and Motivation
* Octopus Design

* Evaluation

* Conclusion

eScalable and Reliable RDMA

RC is hard to scale

o MCX353A ConnectX-3 FDR HCA (single port)

o 1 server node send verbs to 11 clientnodes

Throughput (Mops/s)
o

10 100 200 300 400 500 600 700 800 #. of clients
©-RC Write +UD Send 25

RCvs UD

Reliable Connection (RC)

One-to-one paradigm

QP

(0]
QP

o Offloadingwith one-sided verbs
o Higher performance

o Reliable

o Flexible-sized transferring
oHard to scale

Unreliable Datagram (UD)

One-to-many paradigm

o Unreliable (risk of packet loss, out-
of-order, etc.)

o Cannot support one-sided verbs
o MTU is only 4KB
o Good scalability

26

Why is RC hard to scale?

Client

CPU CPU CPU

| MEM

MEM

c Memory-Mapped I/O e PCle DMA Read

@ rcie DMA Write (DDIO enabled)

e CPU Polls Message

e Packet Sending

27

Why is RC hard to scale?

Two types of Resource Contention:

m NIC Cache!”

o Mappingtable
o QP states Message Pool

L Ao S :
o Work queue elements Server: v
m CPU Cache
o DDIO writesdatato LLC Clients

o Only 10% reserved for DDIO

With RC, the size of cached data is proportional to the
number of clients! .

Our goal: how to make RC scalable

B Focus on RPC primitive with RC write
o RPCis a good abstraction, widely used
o RC write (one-sided) has higher throughput (FaRM)

m Target at one-to-many data transferring paradigm
o e.g., MDS, KV store, parameter server, etc.

m System-levelsolution
o Withoutany modifications to the hardware

m Deployments
o Metadataserverin Octopus
o Distributed transactional system

1. Grouping the connections

m Naive Approach

oNIC cache thrashing when the
number of clientsincreases

o Frequentswap in/out

~ /! o Causing higher PCle traffic
__-—@----@ -~RC Write Verb

»7 1 \

\
N
o

—

100 150 200
#. of clients

o
o
U1
o

Throughput (Mops/s)
S

1. Grouping the connections

B Connection Grouping
o Serve one group at a time slice

31

1. Grouping the connections

B Connection Grouping
o Serve one group at a time slice

o Better cache locality: recently
accessed metadatais more likely
be used again

32

2. Virtualized Mapping

m Alleviatethe contentionin the CPU cache
o Reduce memory footprint in the message pool

m Observations:
o When grouping the clients, only part of the message poolis used

Message Pool

Server ll'%‘:%‘_‘_“?‘_‘ = '_'_ﬁ_ﬁ_t@_?@?j
Clients

e’

—

Current group Unused message buffers

2. Virtualized Mapping

m We don’t need to assign a message buffer for each client

o Virtualize a single physical message poolto be shared among
multiple groups
o Without extra overhead for loading/saving the context

Message Pool

Server

c..e,,ﬁfff

34

2. Virtualized Mapping

m We don’t need to assign a message buffer for each client

o Virtualize a single physical message poolto be shared among
multiple groups
o Without extra overhead for loading/saving the context

Message Pool

Server \Swnchlng to the next group

T335.

Other Challenges & solutions

m Staticgroupingis suboptimal when clients have
o Varying requirements for the tail latency
o Varying frequencies of the posted RPCs
o Varying payloadsizes
o Varying execution times for differenthandlers

= Priority-based scheduler: monitors the performance of each clients
and dynamically adjust the group size and time slice length.

m Switchingbetween the groups should be efficient

= Warmup pool: before being served, clients from the next group put
their new requests in the warmup pool first

Details in [2] Scalable RDMA RPC on Reliable Connection with Efficient Resource
Sharing. Youmin Chen, Youyou Lu, Jiwu Shu, in Eurosys'19

Evaluation

m Platform
o 2X 2.2GHz Intel Xeon E5-2650v4 CPUs (24 coresin total)
o 128 GB DRAM
o MCX353A CX-3 FDR HCAs (56 GbpsIB and 40 GbE)
o 12-node cluster connected with Mellanox SX-1012 switch

mCompared Systems

RPC Description

RawWrite RPC A baseline RPC with all the optimizationsin ScaleRPC disabled
HERD RPC A scalable RPC with a hybrid of UC write and UD send verbs
FaSST RPC A scalable RPC based on UD send verbs

Evaluation

® Throughput
-0-RawWrite HERD -o-RawWrite HERD

. FaSST =8=ScaleRPC . FaSST «8=Sc3leRPC
(7)) (V)]
> 10 > 25
o o
O 8 M O 20 M
‘24: 6 SO ;; 15
) ~-, >
_g- 4 g. 10
oo oo

2 5
o P 3
c 0 c 0
- 60 160 260 360 = 60 160 260 360

#. of clients (Batch = 1) #. of clients (Batch = 8)

Evaluation

B Metadata Serverin Octopus (Distributed File System)

2

80 clients
1.5
1
-l
0

MKNOD RMNQOD STAT READDIR
M RawWrite ™ ScaleRPC

Throughput (ops/s)

39

Thanks

[1] Octopus.: an RDMA-enabled Distributed Persistent Memory
File System. Youyou Lu, Jiwu Shu, Youmin Chen, Tao LI, In
USENIX ATC'17

[2] Scalable RDMA RPC on Reliable Connection with Efficient
Resource Sharing. Youmin Chen, Youyou Lu, Jiwu
Shu, In Eurosys'19

